Recent Advances in Reinforcement Learning: A
Review of Four Key Contributions

1. Introduction

The pursuit of creating intelligent machines has captivated human imagination for
centuries. From the mythical automatons of ancient Greece to the pioneering work of visionaries
like Alan Turing and John McCarthy, the dream of imbuing machines with human-like reasoning
and learning abilities has driven remarkable progress in computer science. In the early days of
artificial intelligence, rule-based systems and symbolic reasoning dominated the landscape.
However, the past decade has witnessed a profound shift towards data-driven approaches, with
machine learning, and particularly deep learning, emerging as the most promising path to
achieving artificial general intelligence. Within this rapidly evolving field, reinforcement
learning has surfaced as a uniquely powerful paradigm for creating autonomous agents that learn
through interaction with their environment.

Reinforcement learning has witnessed significant progress over the past decade,
expanding our understanding of what can be achieved with artificial intelligence. Algorithms
such as AlphaZero, which has demonstrated impressive performance in complex games like
chess and Go through self-learning, and curious agents that explore their environment driven by
intrinsic motivation, have revealed promising new avenues for research.

In this review article, we look at four major contributions with the aim of covering all the
advances of reinforcement learning in the last decade which have paved a way to create versatile
autonomous agents. Firstly, the DeepMind team's remarkable work on AlphaZero demonstrates
that a generic algorithm combining neural networks, Monte Carlo tree search and self-learning
through reinforcement can achieve remarkable levels in chess, shogi and Go, without prior
knowledge of the game other than the rules. This achievement suggests the possibility of
developing agents with more broad and flexible capabilities that can learn to perform well on a
range of tasks with minimal human oversight.

Next, we analyze an innovative approach to encourage the exploration and autonomous
acquisition of skills by agents, relying on artificial curiosity. By generating intrinsic rewards
based on the prediction error in a space of learned representations, agents are encouraged to
discover new behaviors in a completely self-supervised manner. This adaptive curiosity may



enable agents to explore and learn even in complex environments that provide only
sparse or no extrinsic rewards.

The third paper we review introduces a policy optimization method, called Proximal
Policy Optimization (PPO). This simple but effective technique helps stabilize agent training
while retaining the benefits of deep reinforcement learning. Thanks to a regularization term, PPO
achieves state-of-the-art performance in many continuous environments, proving its versatility.

Finally, we examine the emergence of complex behaviors and tool use in a multi-agent
hide-and-seek game. Relying solely on a reward linked to visibility and on competition between
hiders and seekers, we observe the gradual appearance of sophisticated strategies such as the
construction of barricades and ramps. This experience highlights the potential of
self-organization and auto-curricula in multi-agent systems to promote the acquisition of
high-level skills.

Our analysis of these four contributions highlights some of the current trends and
challenges in reinforcement learning research, which we believe warrant further exploration. In
particular, we discuss the importance of developing sample-efficient and stable algorithms
capable of scaling to high-dimensional environments. We also highlight the central role of
exploration and intrinsic motivation in acquiring generalizable and transferable behaviors.

In summary, the research surveyed in this review highlights several promising avenues
for advancing the capabilities of reinforcement learning agents. With continued progress and
sustained research efforts, RL techniques may enable the development of increasingly versatile
agents that exhibit more sophisticated learning, adaptation, and reasoning skills.

2. Methodology

Our methodological approach seeks to identify key insights from four influential articles
in reinforcement learning, examining them through both individual and comparative analyses. To
do this, we adopt a three-pronged analytical framework.

2.1 In-depth analysis of each contribution

First, we examine each of the four papers in detail, highlighting their algorithmic
innovations, theoretical foundations, and empirical results. This individual analysis allows us to
precisely identify the contribution of each contribution to the state of the art.



For each article, we dissect the following key elements:

- The proposed algorithm, its operating principles and its mathematical properties
- The underlying theoretical intuitions and concepts

- The experimental protocol and the tasks considered

- The performances obtained and their comparison with existing methods

- The limits and future perspectives identified by the authors

This methodical dissection provides us with a detailed and exhaustive understanding of
the full scope of each contribution.

2.2 Contextualizing the advancements

Secondly, we endeavor to situate these different works in the broader landscape of
reinforcement learning. The aim here is to identify the major trends that emerge, the points of
convergence and divergence between the approaches, as well as their positioning in relation to
the current challenges in the field.

We pay particular attention to the following aspects:

- Similarities and complementarities in terms of problem formulation and objectives
- The progression of ideas and techniques from one article to another

- Evolution of performance on reference tasks

- The emergence of new issues and research directions

This transversal analysis allows us to map advances coherently.

2.3 Critical synthesis and perspectives

Finally, we take a step back to take a critical look at the contributions analyzed and draw
more general conclusions for the field. We discuss in particular:

- Progress made and remaining obstacles for reinforcement learning

- Strengths, weaknesses and complementarities of the different approaches
- Implications of this work for practical applications of Al

- Open questions and promising avenues for future research



By crossing the threads of our analysis, we gain an overview of the challenges and
opportunities that arise to advance reinforcement learning towards a more autonomous, efficient
and versatile Al.

Through these three complementary components, our methodology aims to produce a
broad and deep synthesis of recent advances, in order to understand their scope and illuminate
the path for future work, especially aimed for people just starting out. The combination of
detailed analysis and perspective allows us to weave a rich and nuanced panorama, conducive to
the emergence of new ideas.

3. Detailed analysis of key articles

Having established the methodological framework, we now proceed to an in-depth
analysis of the four flagship articles in reinforcement learning selected. For each, we dissect the
algorithmic innovations, theoretical foundations, empirical results and implications for the field.

3.1 AlphaZero: Mastering Chess and Shogi by Self-Play

The AlphaZero algorithm, introduced by Silver et al. (2017), achieved remarkable
success in chess, shogi, and Go by integrating reinforcement learning and tree search,
demonstrating the potential of this approach. Its particularity is to start from a tabula rasa, that is
to say to learn to play without any prior knowledge other than the rules of the game.

The heart of AlphaZero is based on a new architecture combining deep neural networks
and Monte Carlo Tree search (MCTS). At each stage of the game, the network predicts a vector
of probabilities of possible moves (the policy) and a scalar value estimating the final score.
These predictions guide the MCTS to selectively explore the most promising sequences of
actions. In return, the research statistics are used to train the neural network in a supervised
manner. This iterative process allows for mutual refinement between the network and the tree
search.

AlphaZero's effectiveness stems from its ability to discover game knowledge completely
autonomously, through a self-learning loop.
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Figure 1: Comparison of network architectures between AlphaZero (a) and NoGoZero+ (b). The diagram
highlights the differences in residual block structures and the addition of advanced features and networks in
NoGoZero+.

By playing millions of games against itself, the algorithm generates its own training
curriculum, exploring ever more sophisticated strategies. This emergence of complexity recalls
the evolution of the game of great human masters over the centuries.
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The experimental results are striking. In the three games studied, AlphaZero significantly
outperforms the best existing programs, which are themselves largely superior to humans. This
demonstrates that a “generalist” artificial intelligence, without specific domain knowledge, can
achieve extreme performance through pure learning.

Beyond technical prowess, AlphaZero opens up new perspectives on the creativity of
machines. Analysis of its games reveals original game ideas, which human experts sometimes

struggle to explain. In this sense, AlphaZero pushes the limits of human understanding of these
ancestral games.

3.1.1 Core Algorithm

AlphaZero's architecture combines three key components:
1. Deep neural networks for policy and value estimation

2. Monte Carlo Tree Search (MCTS) for action selection
3. Self-play reinforcement learning for training

The neural network (s) takes a board position s as input and outputs:


http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=f_%CE%B8(s)#0

- A vector of move probabilities p
- A scalar value v estimating the expected outcome

The MCTS algorithm uses this network to guide its search, expanding the game tree
asymmetrically and focusing on the most promising moves. The search returns a policy =,
represented as a probability distribution over moves.

3.1.2 Training Process

AlphaZero's training process can be summarized as follows:

1. Initialize network parameters 6 randomly

2. Self-play: Generate games using MCTS guided by the current neural network

3. Training: Update 0 to minimize the error between predicted and actual game outcomes,
and to maximize the similarity between the network's policy and the search probabilities

4. Repeat steps 2-3 until convergence

This process can be formalized as optimizing the following loss function:

L) = (z —v)* — 7" logp + c[|0]®
Where z is the game outcome, v is the predicted value, m is the search policy, p is the
predicted policy, and c is a regularization parameter.

3.1.3 Key Innovations

1. Tabula rasa learning: AlphaZero achieves superhuman performance without any
human knowledge beyond the game rules, demonstrating the power of pure self-play
reinforcement learning.

2. General-purpose algorithm: The same algorithm, without modification, masters three
different games (chess, shogi, and Go), showcasing its versatility.

3. Efficient search: AlphaZero's MCTS evaluates orders of magnitude fewer positions
than traditional chess engines, yet achieves superior performance.

3.1.4 Theoretical Foundations
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AlphaZero builds upon the theoretical framework of reinforcement learning, particularly
policy iteration methods. The combination of MCTS with neural networks can be seen as an
approximation of policy iteration, where:

- The MCTS serves as a policy improvement operator
- The neural network serves as a compact policy and value representation

3.1.5 Empirical Results

AlphaZero's performance is nothing short of remarkable:

- In chess, it defeated Stockfish 8, the leading chess engine, in a 100-game match with 28

wins, 72 draws, and 0 losses.
- In shogi, it defeated Elmo, the top shogi engine, with 90 wins, 2 draws, and 8 losses.

- In Go, it surpassed the performance of AlphaGo Lee, achieving a 61% win rate against
it.

These results were achieved after just 24 hours of training for chess and shogi, and 8
hours for Go, highlighting the algorithm's sample efficiency.

3.1.6 Limitations and Future Work

While AlphaZero's achievements are impressive, several limitations and areas for future

research remain:

1. Generalization to imperfect information games
2. Adaptation to real-world problems with larger state and action spaces
3. Improving sample efficiency for more complex domains

3.2 Curiosity-driven Exploration by Self-supervised Prediction

Pathak et al. (2017) investigate a key challenge in reinforcement learning: how to
facilitate exploration in environments with sparse or absent extrinsic rewards? Their
proposed solution is to use a curiosity signal as an intrinsic reward to guide exploration.



The key idea is to train a predictive model to anticipate the consequences of the agent's
actions on its environment.
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Figure 2: Intrinsic Curiosity Module (ICM) architecture for reinforcement learning. The left panel shows
the high-level structure, while the right panel details the internal components of the ICM.

More precisely, the model seeks to predict the representation of a future state given the
representation of the current state and the action performed. The prediction error is then used as a
curiosity signal to reward the agent when it discovers “surprising” situations, that is to say
difficult to predict.

The trick of the method is to learn the state representation in a self-supervised manner, by
jointly training an inverse model to predict the action performed from the current and next states.
Thus, the representation focuses on aspects of the environment that are relevant for predicting
actions, while ignoring uncontrolled variations such as changes in illumination. This makes
exploration robust to potential distractors.

Experiments conducted on 3D navigation environments and the Super Mario Bros game
indicate the potential effectiveness of this approach. In both cases, an agent driven by curiosity
alone manages to explore large portions of the state space, without any extrinsic reward.
Additionally, learned behaviors transfer well to new levels, showing generalization ability.

On a theoretical level, this work is part of a rich literature on intrinsic motivation in
reinforcement learning, in particular approaches based on uncertainty reduction. The originality
here is to use an inverse model to learn a compact representation of the state, centered on the
agent, allowing robust prediction.



3.2.1 Core Algorithm

The curiosity-driven exploration algorithm consists of three main components:

1. Forward dynamics model
2. Inverse dynamics model
3. Intrinsic reward module

The forward dynamics model f predicts the next state feature P(st+1) given the current

state feature ¢(3t) and action @¢:

A

P(st11) = f(P(s1), ar)

The inverse dynamics model g predicts the action ¢ given the current and next state
features:

ay = g(d(se), d(se+1))

1
The intrinsic reward "t is computed as the error in the forward dynamics prediction:

1

5“5(51%1) - ¢(3t+1)H§

i
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3.2.2 Training Process

The algorithm is trained in two phases:

1. Self-supervised learning of state features:
- Train the inverse dynamics model to predict actions
- This encourages the feature space to encode only the aspects of the environment that
the agent can influence

2. Reinforcement learning with intrinsic rewards:
- Use the learned features to train the forward dynamics model
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- Compute intrinsic rewards based on prediction errors
- Train the policy using both extrinsic (if available) and intrinsic rewards
The overall objective function can be expressed as:

L= Linverse + Lforward + Lpolicy

where Linverse and Lforward are the losses for the inverse and forward dynamics

models, respectively, and Lpoticy

3.2.3 Key Innovations

1. Self-supervised feature learning: By using the inverse dynamics model, the algorithm
learns a state representation that focuses on controllable aspects of the environment.

2. Prediction-based curiosity: The intrinsic reward based on forward dynamics prediction
errors encourages exploration of novel, learnable states.

3. Scalability: The approach is applicable to high-dimensional state spaces, including
visual inputs.

3.2.4 Theoretical Foundations

The curiosity-driven exploration algorithm builds on several theoretical concepts:

1. Intrinsic motivation in reinforcement learning
2. Self-supervised learning for representation learning
3. Information theory, particularly the concept of empowerment

The authors provide a theoretical analysis showing that their approach is equivalent to

maximizing the mutual information between actions and state transitions in the learned feature
space.

3.2.5 Empirical Results
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The algorithm was evaluated on several challenging environments:

1. VizDoom: Achieved significant progress in sparse-reward scenarios where traditional
methods fail.

2. Super Mario Bros.: Demonstrated effective exploration and level completion without
extrinsic rewards.

3. Atari games: Showed improved performance on several games, particularly those with
sparse rewards.

In many cases, the curiosity-driven agent was able to make progress even in the complete
absence of extrinsic rewards, highlighting the power of intrinsic motivation for exploration.

3.2.6 Limitations and Future Work

While the curiosity-driven approach shows promise, several challenges remain:

1. Handling stochastic environments where prediction is inherently difficult
2. Balancing exploration and exploitation in the presence of dense extrinsic rewards
3. Scaling to even more complex, open-ended environments

3.3 Proximal Policy Optimization (PPO)

Schulman et al. (2017) introduce a novel approach to policy optimization in
reinforcement learning, seeking to balance simplicity, stability, and empirical
performance. Called Proximal Policy Optimization (PPO), it introduces a clever modification
of the objective function to stabilize learning.

The issue is as follows: policy optimization algorithms generally seek to maximize the
expected cumulative rewards, by iteratively adjusting the policy parameters in the direction of
the gradient. However, nothing controls the magnitude of policy changes between two iterations.
Changes that are too big can destabilize learning, while changes that are too small slow it down.
The challenge is therefore to find a happy medium.

PPO aims to address this problem by modifying the objective function.
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Algorithm 1 PPO-Clip
: Input: initial policy parameters 6, initial value function parameters ¢

2: for k=0,1,2,... do

3. Collect set of trajectories Dy = {7;} by running policy m = w(0;) in the environmen

4: Compute rewards-to-go R,g A

5. Compute advantage estimates, A; (using any method of advantage estimation) base
on the current value function Vj, .

6:  Update the policy by maximizing the PPO-Clip objective:

Ort1 = arg max |Dk|T Z me (;fi(((:tnz)) A% (8¢, a¢), gle, A™ (St:af))) )

Dy

typically via stochastic gradient ascent with Adam.
7. Fit value function by regression on mean-squared error:

Gry1 = arg mm |’Dk|T Z Z (hg. 51) — Ri)

7Dy, =0

typically via some gradient descent algorithm.
8: end for

Figure 3: Pseudocode for the PPO-Clip algorithm, detailing the steps for policy optimization in
reinforcement learning, including trajectory collection, advantage estimation, and parameter updates.

The idea is to penalize policy changes that stray too far from the old one, in the sense of
the Kullback-Leibler divergence. Concretely, this amounts to maximizing the ratio between the
new and old policy, while constraining it to remain in an interval around 1. This mechanism
prevents sudden updates, without resorting to delicate hyperparameters to adjust like no learning.

Despite its simplicity, PPO has shown promising results on many benchmark problems,
particularly continuous motor control. It consistently outperforms previous methods such as
TRPO (Schulman et al., 2015), while being much simpler to implement. In addition, it shows
good robustness to hyperparameter choices.

On a theoretical level, PPO relies on solid results in non-convex optimization, notably the
concept of trust regions. It generalizes previous approaches based on KL divergence
penalization, making them more stable and easy to use. Its theoretical guarantees are the subject
of active research.

3.3.1 Core Algorithm
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PPO is based on the idea of constraining policy updates to prevent large, destructive
changes. The key innovation is the use of a clipped surrogate objective:

LEMP(9) = E,[min(ry(0) Ay, clip(ry(0),1 — €, 1 + €) A,)]

where:
o) — 7o (ag|st)

Tt (
- 7¢(0) is the probability ratio 0,1 (@t]5¢)

_ Ay is the estimated advantage at time ¢
- € 1s a hyperparameter, typically set to 0.2

3.3.2 Training Process

PPQ's training process can be summarized as follows:

1. Collect a batch of data using the current policy

2. Compute advantages A, using Generalized Advantage Estimation (GAE)
3. Perform multiple epochs of minibatch SGD to optimize the clipped surrogate objective
4. Repeat steps 1-3 until convergence

The full PPO algorithm often includes additional components:

- Value function learning
- Entropy bonus for exploration

This leads to an extended objective:

LELIPTVERS () = B LEHP(0) — e, LT (0) + e2S[r](s0)]

VF . . .
where L:  is the value function loss and S is an entropy bonus.

3.3.3 Key Innovations
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1. Clipped surrogate objective: Provides a pessimistic estimate of the policy's
performance, preventing overly large updates.

2. Multiple epochs of minibatch updates: Allows for more efficient use of collected data
compared to standard policy gradient methods.

3. Adaptive KL penalty (optional variant): Automatically adjusts the penalty coefficient

to achieve a target KL divergence between old and new policies.

3.3.4 Theoretical Foundations

PPO builds upon several key concepts in policy optimization:

1. Trust region methods: PPO can be seen as an approximation to Trust Region Policy
Optimization (TRPO) that is simpler to implement and more generally applicable.

2. Importance sampling: The probability ratio 71(0) is an important sampling estimator
that allows off-policy learning.

3. Conservative policy iteration: The clipping in the surrogate objective is inspired by the
lower bound used in conservative policy iteration.

3.3.5 Empirical Results

PPO was evaluated on a variety of tasks:

1. Continuous control: Outperformed other policy optimization methods on MuJoCo
benchmarks.

2. Atari games: Achieved state-of-the-art performance, comparable to or better than
methods like A2C and ACER.

3. Humanoid locomotion: Successfully learned complex behaviors like running and
steering in 3D environments.

The authors demonstrated that PPO consistently performed well across different domains
without requiring extensive hyperparameter tuning.


https://www.codecogs.com/eqnedit.php?latex=r_t(%5Ctheta)#0
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3.3.6 Limitations and Future Work

While PPO has been widely adopted, there are still areas for improvement:

1. Theoretical analysis of the clipped objective's properties

2. Improving sample efficiency in more complex domains

3. Combining PPO with other advanced RL techniques (e.g., hierarchical RL,
meta-learning)

3.4 Emergent Tool Use From Multi-Agent Autocurricula

Baker et al. (2019) study the emergence of complex behaviors in a competitive
multi-agent framework. Their reference environment is a game of hide-and-seek opposing two
teams of agents who must respectively hide or find themselves in an arena strewn with objects.
The only reward signal is linked to the visibility of the hiders by the seekers.

Remarkably, this minimalist signal is enough to elicit sophisticated tool use strategies
over the course of training. For example, hiders learn to build shelters with boxes to conceal
themselves. In response, seekers discovered how to use ramps to enter forts. What follows is an
evolving arms race where each team learns to counter the other's innovations.

The authors identify six distinct phases in this emergence of increasingly sophisticated
strategies. Each transition creates new adaptation pressure for the opposing team, forcing them to
discover a solution.

Object Counting Lock and Return Sequential Lock Blueprint Construction  Shelter Construction
T e - = = - A

Pretrained in Hide-and-Seek @ Trained From Scratch Pretrained with Count-Based Intrinsic Motivation
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Figure 2: Performance comparison of different pretraining methods across five construction tasks in a 3D
environment. The graphs show normalized reward over training samples for agents pretrained in Hide-and-Seek,
trained from scratch, and pretrained with Count-Based Intrinsic Motivation.

This dynamic is reminiscent of complex self-organizing systems, where high-level
structures emerge spontaneously from local interactions.

A key ingredient is competitive self-play between the two agent teams, which acts as an
auto-curriculum mechanism. By continually adapting to each other, teams offer each other
learning challenges of increasing difficulty, thus increasing the overall complexity. This
mechanism evokes the "Red Queen" hypothesis of evolution, where inter-species competition
forces constant improvement in abilities.

Another strong point of the study is the use of transfer tasks to assess the capabilities
acquired by the agents. The authors define a suite of targeted tests, such as navigation, object
manipulation or construction, to probe different facets of intelligence. They show that agents
trained in the game of hide-and-seek perform better in these tests than agents trained by intrinsic
motivation or from scratch. This suggests that multi-agent competition favors the acquisition of
general and transferable abilities.

Conceptually, this work is part of a rich tradition of research on the evolution of
complexity in multi-agent systems, at the interface between artificial life, evolutionary robotics
and game theory. Its originality is to consider the use of tools, an ability long considered to be the
prerogative of human beings and some animal species. Showing that this faculty can emerge
spontaneously in a virtual world opens up stimulating perspectives for understanding its
evolution in nature.

3.4.1 Core Algorithm

The multi-agent learning system consists of several key components:

1. Multi-agent environment: A hide-and-seek game with movable objects and tools

2. Policy networks: Deep neural networks representing agent policies

3. Centralized training, decentralized execution: Agents share weights during training but
act independently during evaluation

4. Reinforcement learning algorithm: Proximal Policy Optimization (PPO) for policy
optimization

The agents are trained using self-play, where they compete against each other in teams of
hiders and seekers. The reward structure is simple:

- Hiders receive +1 if all are hidden, -1 otherwise

- Seekers receive the opposite reward
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3.4.2 Training Process

The training process can be summarized as follows:

1. Initialize agent policies randomly
2. For each episode:
a. Sample teams of hiders and seekers
b. Run the hide-and-seek game
c. Compute rewards and update policies using PPO
3. Periodically evaluate agent performance and save snapshots
4. Repeat steps 2-3 until convergence or a fixed number of iterations

The key to the emergence of complex behaviors is the autocurriculum that arises from the
competitive multi-agent setting. As agents improve their strategies, they create new challenges
for their opponents, leading to a continual learning process.

3.4.3 Key Innovations

1. Autocurriculum generation: The competitive multi-agent setting naturally produces a
curriculum of increasingly complex tasks.

2. Emergent tool use: Agents learn to use objects in the environment as tools without
explicit reward shaping.

3. Transfer learning: Skills learned in one phase of training transfer to new scenarios and
challenges.

3.4.4 Theoretical Foundations

The research builds on several important concepts:

1. Multi-agent reinforcement learning: Extends single-agent RL to competitive and
cooperative scenarios.

2. Open-ended learning: Focuses on creating environments that support continual skill
acquisition.

3. Evolutionary game theory: The dynamics of strategy evolution in the hide-and-seek
game relate to concepts from evolutionary game theory.
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3.4.5 Empirical Results

The authors observed several remarkable emergent behaviors:

1. Tool use: Agents learned to move boxes to create ramps and reach previously
inaccessible areas.

2. Collaborative strategies: Hiders learned to work together to construct barricades.

3. Counter-strategies: Seekers developed techniques to break into hider-constructed
fortresses.

4. Meta-game progression: A clear progression of strategies and counter-strategies
emerged over the course of training.

These behaviors emerged without any explicit reward for tool use or collaboration,
demonstrating the power of the autocurriculum.

3.4.6 Limitations and Future Work

While the results are impressive, several challenges and opportunities for future work
remain:

1. Scaling to more complex environments with a wider variety of objects and potential
interactions

2. Investigating the transfer of learned skills to real-world robotic tasks

3. Combining autocurriculum learning with other forms of intrinsic motivation and
exploration

4. Summary and perspectives

The four articles analyzed in this review represent major advances in the field of
reinforcement learning. Each brings significant algorithmic and conceptual innovations that push
the boundaries of what is possible in terms of learning efficiency, generalization, and emergence
of complex behaviors.

4.1 Cross-cutting themes and complementarity of approaches

Beyond their individual contributions, these works share several common themes that
echo and reinforce each other. A first common thread is the use of deep learning as a building
block to build more efficient and adaptable agents. Deep neural networks indeed play a central
role in each of these approaches, whether to represent the value function and the policy in
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AlphaZero, to build the predictive model in curiosity-driven exploration, or to approximate the

parameterization of the policy in PPO. This ubiquity demonstrates the flexibility and power of
deep learning architectures to approximate complex functions, and suggests that they will
continue to occupy a prominent place in future developments in reinforcement learning.

Algorithm Core Principle Key Innovation Theoretical Empirical
Guarantee Performance
AlphaZero Self-play + Tabula rasa Convergence to Superhuman in
MCTS learning Nash equilibrium | Chess, Shogi, Go
Curiosity-driven | Intrinsic Self-supervised Improved State-of-the-art in
Exploration motivation prediction exploration in hard exploration
sparse reward Atari games
settings
PPO Trust region Clipped surrogate | Monotonic Strong
optimization objective improvement performance across
(approximate) various domains
Multi-Agent Competitive Emergent Open-ended Complex tool use
Auto Curricula | self-play complexity learning and strategies in

simple
environments

Table 1 serves as a quick reference point and aids in identifying overarching trends and unique contributions across

the papers.

A second point of convergence is the emphasis placed on learning representations
relevant to the task considered. AlphaZero learns its own position evaluation function from its
experiences playing against itself. Curiosity-guided exploration constructs a compact
representation of the state focused on aspects controllable by the agent. Emerging auto-curricula

in multi-agent systems lead to the incremental learning of increasingly abstract representations.

This common desire to discover the representations best able to support the agent's decisions and

predictions, rather than designing them by hand, is another guiding principle which seems to us
to play an important role.

Finally, a last recurring theme is the exploitation of the temporal structures present in the
interaction trajectories of the agent with its environment. AlphaZero uses Monte Carlo tree
search to estimate future rewards from past rewards. Curiosity-driven exploration relies on

temporal coherence between successive states to learn a predictive model. PPO uses the

advantage, which measures the difference between the obtained reward and the average expected
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reward, to update the policy. Multi-agent auto-curricula are based on the co-evolution over time
of the strategies of the different agents. Thus, far from being limited to exploiting spatial
correlations within states, these approaches also take advantage of temporal correlations between
states to guide learning in a more informed way.

Beyond these shared themes, it is striking to see the extent to which these different works
complement and enrich each other. For example, the representations learned by the curiosity
module could serve as the basis for AlphaZero's value and policy networks, while the latter's tree
search could be used to collect trajectories used to train the former's predictive model. Similarly,
Proximal Policy Optimization algorithm could benefit from being combined with
curiosity-driven exploration, and conversely the curiosity module would benefit from using PPO
to update its exploration policy. As for multi-agent auto-curricula, they could be combined with
each of the three other approaches to bring out even more sophisticated behaviors.

Thus, far from opposing or competing with each other, these different works outline the
contours of an integrated scientific landscape, where the advances of some can be reinvested to
advance others. In this sense, they open up many promising avenues for developing ever more
efficient reinforcement learning agents.

4.2 Challenges and future directions

Despite this impressive progress, many challenges remain to achieve the ambition of
agents as versatile and autonomous as possible. We discuss some of the most important ones.

A first major challenge is that of scaling up. Although the results presented here are
already remarkable, they remain confined to relatively simple environments and would greatly
benefit from being extended to larger tasks. For AlphaZero, the challenge is to tackle
combinatorial games offering an even larger search space, such as the game of Go without
handicap or certain real-time strategy games. For exploration guided by curiosity and PPO, it is a
question of experimenting with richer and more realistic sensory environments, involving for
example high-resolution visual inputs or large-dimensional continuous action spaces. As for
multi-agent auto-curricula, the objective would be to study the emergence of behaviors in ever
larger and more heterogeneous groups of agents. In each case, scaling up will likely require
advances both at the algorithmic level (e.g. on optimization or exploration methods) and at the
architectural level (e.g. on the structure of neural networks or representations of State).

A second long-term challenge is that of generalizing the skills acquired. As we have seen,
each of the approaches studied here allows to a certain extent to transfer knowledge from one
task to another, whether by reusing the learned values to initialize a new search (AlphaZero), by
exploiting a predictive model to accelerate exploration (intrinsic curiosity), or by taking
advantage of behaviors discovered through emergence (auto-curricula). However, this
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generalization capacity remains limited to relatively similar tasks. An ambitious longer-term goal
is to make progress towards designing agents capable of continuous learning (life-long learning)
and far transfer - meaning they can reuse and recombine knowledge acquired from disparate
previous tasks to more quickly adapt to novel situations. However, significant open challenges
remain in achieving this. This will probably involve architectures capable of discovering
invariants or deep analogies between tasks, and learning meta-adaptation strategies.

A third challenge concerns the joint optimization of different objectives. In most current
work, the agent seeks to maximize a single reward signal which alone summarizes the task to be
accomplished. However, in many practical applications, the agent must satisfy several objectives
simultaneously, some of which may even be contradictory. For example, a rescue robot must
quickly explore the area, precisely locate the victims, maintain its equipment in good condition
and preserve its own integrity. Likewise, a chatbot should strive to be relevant, informative,
coherent and engaging. Learning to manage such compromises, by adapting to the context and
user preferences, constitutes another area of research that is still largely open. Interesting avenues
include multi-objective learning, optimization under constraints, voting systems or negotiation
between specialized sub-modules.

Finally, a final major challenge is that of interpretability and confidence. As impressive
as they are, the prowess of reinforcement learning agents often remains opaque: it is difficult to
understand the reasons for their decisions or to precisely characterize their strengths and
limitations. This opacity can be problematic for their adoption in critical applications such as
health, autonomous transport or finance. A crucial area of research for the years to come is
therefore that of explainable agents, capable of justifying and analyzing their own behavior.

This could involve introspective systems equipped with reflective capabilities on their
own reasoning, or through interfaces allowing more natural and intuitive exchanges with users.
The challenge is to build a relationship of trust with humans, by helping them understand the
functioning of these autonomous systems and by giving them appropriate means of control.

4.3 Epilogue: towards a theory of autonomous learning?

Beyond the advances and perspectives summarized in this synthesis, perhaps the most
fundamental contribution of this work is of a conceptual nature. One perspective on
reinforcement learning is to view it as a path towards increasing the autonomy of
learning agents, whereby they can learn to learn for themselves, guided by their own
objectives and internal motivations. However, much research is still needed to fully
realize this vision.
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In this sense, this work is part of an approach which aims to go beyond the classic
framework of supervised learning, where the agent is content to passively assimilate a predefined
set of labeled examples, to move towards intrinsically motivated agents, capable of generating
their own goals and their own learning curriculum. The work reviewed here suggests a shift in
perspective in the last decade, where learning is not just conceived as a unidirectional transfer of
knowledge from expert to learner, but also encompasses active, self-directed processes of
exploration, experimentation and discovery.

This quest for autonomy raises exciting questions at the borders of artificial intelligence
and cognitive sciences. What drives an agent to explore and learn? How to evaluate your
progress and define your own objectives? Can we design agents with truly intrinsic motivations,
and not just driven by arbitrary external rewards? To make progress on these questions, it may be
valuable to study and draw inspiration from the impressive autonomous learning capabilities
demonstrated by biological organisms, especially young children during development. However,
how to best translate those insights into artificial systems remains an open challenge.

In summary, the work presented in this article opens many stimulating perspectives at the
intersection of reinforcement learning, deep learning, and more generally the sciences of learning
and cognition. They invite us to rethink the very nature of intelligent systems and the processes
that shape them. It seems plausible that continued research into autonomous learning
mechanisms may contribute significantly to the development of more advanced artificial
intelligence systems that exhibit greater power, versatility and creativity compared to
current approaches.

5. Conclusion

The four articles analyzed in this review represent significant milestones in reinforcement
learning research. They demonstrate the progress of the field towards more general, efficient and
powerful algorithms. AlphaZero shows the potential of pure self-play-based reinforcement
learning in complex environments. Curiosity-driven exploration offers a solution to the
fundamental problem of exploration. PPO provides a simple but effective approach for policy
optimization. Work on multi-agent auto-curricula reveals the emergence of complex behaviors
through competitive self-play.

Although significant challenges remain, this foundational work paves the way for
exciting future breakthroughs that will shape the future of Al. Given the rapid progress in the
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field, it's reasonable to anticipate that reinforcement learning research will likely yield exciting
new insights and innovations in the coming years, much like a curious child discovering a
playground. At the same time, we should remember that even a precocious child still has much to
learn, and that the path to truly general and flexible machine intelligence remains long and
uncertain. Careful experimentation, clear-eyed analysis, and a healthy dose of patience will all be
essential.
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